92 research outputs found

    The Juventas CubeSat in Support of ESA\u27s Hera Mission to the Asteroid Didymos

    Get PDF
    The European Space Agency’s planetary defense Hera mission will launch to the Didymos binary asteroid system in 2023 (with bodies nicknamed Didymain and Didymoon). Once in vicinity of the asteroid, two 6U CubeSats will be deployed to contribute to the asteroid research and mitigation assessment objectives of the Hera mission. This paperwill describe the Juventas CubeSat, equipped with a low frequency radar payload to characterize the internal structure of Didymoon. Juventas is designed to be operated using the Hera mothercraft as a proxy. This mission architecture creates a new paradigm for CubeSats, requiring high levels of mission autonomy while operating in the challenging environment of a small-body binary asteroid. Juventas will utilize the inter-satellite link to Hera for performing radio science experiments, augmenting the characterization of the asteroid gravity field. Once the radar science and radio science observation objectives have been met, Juventas will perform an attempted landing on the surface of Didymoon to research its dynamical properties

    ORIGO: A mission concept to challenge planetesimal formation theories

    Get PDF
    Comets are generally considered among the most pristine objects in our Solar System. There have thus been significant efforts to understand these bodies. During the past decades, we have seen significant progress in our theoretical understanding of planetesimal/cometesimals (the precursors of comets) formation. Recent space missions—such as ESA’s Rosetta mission to comet 67P/Churyumov-Gerasimenko—have provided observations claimed by proponents of different comet formation theories to validate their scenarios. Yet, no single formation paradigm could be definitively proven. Given the importance of understanding how the first bodies in our Solar System formed, we propose a dedicated mission to address this issue. ORIGO will deliver a lander to the surface of a cometary nucleus where it will characterise the first five m of the subsurface. With remote sensing instruments and the deployment of payload into a borehole, we will be able to study the physico-chemical structure of ancient, unmodified material. The mission has been designed to fit into the ESA M-class mission budget

    The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling

    Get PDF
    The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples

    Origo - an ESA M-class mission proposal to challenge planetesimal formation theories.

    Get PDF
    The Origo mission was submitted in response to the 2021 call for a Medium-size mission opportunity in ESA's Science Programme.The goal of Origo is to inform and challenge planetesimal formation theories. Understanding how planetesimals form in protoplanetary disks is arguably one of the biggest open questions in planetary science. To this end, it is indispensable to collect ground truths about the physico-chemical structure of the most pristine and undisturbed material available in our Solar System. Origo seeks to resolve the question of whether this icy material can still be found and thoroughly analysed in the sub-surface of comets.Specifically, Origo aims to address the following immediate science questions:Were cometesimals formed by distinct building blocks such as e.g. "pebbles", hierarchical sub-units, or fractal distributions? How did refractory and volatile materials come together during planetesimal growth e.g. did icy and refractory grains grow separately and come together later, or did refractory grains serve as condensation nuclei for volatiles? Did the building blocks of planetesimals all form in the vicinity of each other, or was there significant mixing of material within the protoplanetary disk? To answer these questions Origo will deliver a lander to a comet where we will characterise the first five meters of the subsurface with a combination of remote-sensing and payloads lowered into a borehole. Our instruments will examine the small scale physico-chemical structure. This approach will allow us to address the following objectives, each of which informs the respective science question: Reveal the existence of building blocks of a cometary nucleus from the (sub-)micron to metre scale by exploring unmodified material. Determine the physical structure of these building blocks, in particular, the size distribution of components and how refractory and volatile constituents are mixed and/or coupled. Characterise the composition of the building blocks by identifying and quantifying the major ices and refractory components. Over the past decade, significant theoretical advances have been achieved in working out possible planetesimal formation scenarios.The two leading hypotheses for how planetesimals formed from sub-micron dust and ice particles in the proto-planetary nebula can be classified into two groups:the hierarchical accretion of dust and ice grains to form planetesimals; and the growth of so-called pebbles, which are then brought to gentle gravitational collapse to form larger bodies by e.g. the streaming instability. These competing theories only have indirect proof from observations.Direct evidence, i.e. ground truths, about the building blocks of planetesimals remain hidden. Origo would challenge these theories by examining the physico-chemical structure of the most pristine material available in our Solar System. Though the proposal was not retained for step 2 we present our concept for community discussion

    After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission

    Get PDF
    NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction

    More Bucks for the Bang: New Space Solutions, Impact Tourism and one Unique Science & Engineering Opportunity at T-6 Months and Counting

    Get PDF
    For now, the Planetary Defense Conference Exercise 2021's incoming fictitious(!) asteroid, 2021 PDC, seems headed for impact on October 20th, 2021, exactly 6 months after its discovery. Today (April 26th, 2021), the impact probability is 5%, in a steep rise from 1 in 2500 upon discovery six days ago. We all know how these things end. Or do we? Unless somebody kicked off another headline-grabbing media scare or wants to keep civil defense very idle very soon, chances are that it will hit (note: this is an exercise!). Taking stock, it is barely 6 months to impact, a steadily rising likelihood that it will actually happen, and a huge uncertainty of possible impact energies: First estimates range from 1.2 MtTNT to 13 GtTNT, and this is not even the worst-worst case: a 700 m diameter massive NiFe asteroid (covered by a thin veneer of Ryugu-black rubble to match size and brightness) would come in at 70 GtTNT. In down to Earth terms, this could be all between smashing fireworks over some remote area of the globe and a 7.5 km crater downtown somewhere. Considering the deliberate and sedate ways of development of interplanetary missions it seems we can only stand and stare until we know well enough where to tell people to pack up all that can be moved at all and save themselves. But then, it could just as well be a smaller bright rock. The best estimate is 120 m diameter from optical observation alone, by 13% standard albedo. NASA's upcoming DART mission to binary asteroid (65803) Didymos is designed to hit such a small target, its moonlet Dimorphos. The Deep Impact mission's impactor in 2005 successfully guided itself to the brightest spot on comet 9P/Tempel 1, a relatively small feature on the 6 km nucleus. And 'space' has changed: By the end of this decade, one satellite communication network plans to have launched over 11000 satellites at a pace of 60 per launch every other week. This level of series production is comparable in numbers to the most prolific commercial airliners. Launch vehicle production has not simply increased correspondingly - they can be reused, although in a trade for performance. Optical and radio astronomy as well as planetary radar have made great strides in the past decade, and so has the design and production capability for everyday 'high-tech' products. 60 years ago, spaceflight was invented from scratch within two years, and there are recent examples of fastpaced space projects as well as a drive towards 'responsive space'. It seems it is not quite yet time to abandon all hope. We present what could be done and what is too close to call once thinking is shoved out of the box by a clear and present danger, to show where a little more preparedness or routine would come in handy - or become decisive. And if we fail, let's stand and stare safely and well instrumented anywhere on Earth together in the greatest adventure of science

    After DART: Using the first full-scale test of a kinetic impactor to inform a future planetary defense mission

    Get PDF
    NASA's Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ~10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos's response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β\beta, showing that a particular direction-specific β\beta will be directly determined by the DART results, and that a related direction-specific β\beta is a figure of merit for a kinetic impact mission. The DART β\beta determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos's near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in-situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction

    After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission

    Get PDF
    After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission Thomas S. Statler 1 , Sabina D. Raducan 2 , Olivier S. Barnouin 3 , Mallory E. DeCoster 3 , Steven R. Chesley 4 , Brent Barbee 5 , Harrison F. Agrusa 6 , Saverio Cambioni 7 , Andrew F. Cheng 3 , Elisabetta Dotto 8 , Siegfried Eggl9 , Eugene G. Fahnestock 4 , Fabio Ferrari 2 , Dawn Graninger 3 , Alain Herique 10 , Isabel Herreros 11 , Masatoshi Hirabayashi 12,13 , Stavro Ivanovski 14 , Martin Jutzi 2 , Özgür Karatekin 15 , Alice Lucchetti 16 , Robert Luther 17 , Rahil Makadia 9 , Francesco Marzari 18 , Patrick Michel 19 , Naomi Murdoch 20 , Ryota Nakano13 , Jens Ormö 11 , Maurizio Pajola 16 , Andrew S. Rivkin3 , Alessandro Rossi 21 , Paul Sánchez 22 , Stephen R. Schwartz 23 , Stefania Soldini 24 , Damya Souami 19 , Angela Stickle 3 , Paolo Tortora 25 , Josep M. Trigo-Rodríguez 26,27 , Flaviane Venditti 28 , Jean-Baptiste Vincent 29 , and Kai Wünnemann 17,30 1 Planetary Defense Coordination Office and Planetary Science Division, NASA Headquarters, 300 Hidden Figures Way SW, Washington, DC 20546, USA [email protected] 2 Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, 3012, Switzerland 3 Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA 4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 5 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 6 Department of Astronomy, University of Maryland, College Park, MD 20742, USA 7 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA 8 INAF-Osservatorio Astronomico di Roma, Rome, I-00078, Italy 9 Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 10 Univ. Grenoble Alpes, CNRS, CNES, IPAG, F-38000 Grenoble, France 11 Centro de Astrobiología CSIC-INTA, Instituto Nacional de Técnica Aeroespacial, E-28850 Torrejón de Ardoz, Spain 12 Department of Geosciences, Auburn University, Auburn, AL 36849, USA 13 Department of Aerospace Engineering, Auburn University, Auburn, AL 36849, USA 14 INAF- Osservatorio Astronomico di Trieste, Trieste I-34143, Italy 15 Royal Observatory of Belgium, Belgium 16 INAF-Astronomical Observatory of Padova, Padova I-35122, Italy 17 Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Germany 18 University of Padova, Padova, Italy 19 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice F-06304, France 20 Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), Université de Toulouse, Toulouse, France 21 IFAC-CNR, Sesto Fiorentino I-50019, Italy 22 Colorado Center for Astrodynamics Research, University of Colorado Boulder, Boulder, CO 80303, USA 23 Planetary Science Institute, Tucson, AZ 85719, USA 24 Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK 25 Alma Mater Studiorum—Università di Bologna, Department of Industrial Engineering, Interdepartmental Center for Industrial Research in Aerospace, Via Fontanelle 40—Forlì (FC)—I-47121, Italy 26 Institute of Space Sciences (ICE, CSIC), Cerdanyola del Vallès, E-08193 Barcelona, Catalonia, Spain 27 Institut d’Estudis Espacials de Catalunya (IEEC), Ed. Nexus, E-08034 Barcelona, Catalonia, Spain 28 Arecibo Observatory, University of Central Florida, HC-3 Box 53995, Arecibo, PR 00612, USA 29 German Aerospace Center, DLR Berlin, Germany 30 Freie Universität Berlin, Germany Received 2022 August 9; revised 2022 September 18; accepted 2022 September 22; published 2022 October 28 Abstract NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction- specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near- surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction

    A Direct Observation of the Asteroid’s Structure from Deep Interior to Regolith: Two Radars on the AIM Mission

    No full text
    International audienceThe internal structure of asteroids is still poorly known and has never been measured directly. Our knowledge is relying entirely on inferences from remote sensing observations of the surface and theoretical modeling. Is the body a monolithic piece of rock or a rubble-pile, an aggregate of boulders held together by gravity and how much porosity it contains, both in the form of micro-scale or macro-scale porosi-ty? What is the typical size of the constituent blocs? Are these blocs homogeneous or heterogeneous? The body is covered by a regolith whose properties remain largely unknown in term of depth, size distribution and spatial variation. Is it resulting from fine particles re-accretion or from thermal fracturing? What are its coherent forces? How to model its thermal conductivity, while this parameter is so important to estimate Yar-kowsky and Yorp effects? After several asteroid orbiting missions, theses crucial and yet basic questions remain open. Direct measurements of asteroid deep interior and regolith structure are needed to better understand the asteroid accretion and dynamical evolution and to provide answers that will directly improve our ability to understand and model the mechanisms driving Near Earth Asteroids (NEA) deflection and other risk mitigation techniques. There is no way to determine this from ground-based observation. Radar operating from a spacecraft is the only technique capable of achieving this science objective of characterizing the internal structure and hetero-geneity from submetric to global scale for the benefit of science as well as for planetary defence or exploratio
    corecore